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I. INTRODUCTION

The principal tool of the electromagnetic topologist is the interaction
sequence diagram (ISD), which is the dual graph of the electromagnetic topol-
ogy (EMT) of a system. The EMT is defined in terms of layers, sublayers, and
elementary volumes (Refs. 1,2,3). Sublayers are disjointed from one another,
and layers, defined to be disjointed unions of certain sublayers, are also
mutually disjointed. An elementary volume shares some part of its surface
with another elementary volume. A1l such volumes contained in a sublayer
possess this property, and their union is the sublayer. If only layers and
sublayers are considered, the ISD is a tree graph. In this way the compli-
cation of cycles is deferred to the elementary volume level. In the following,
reference to the ISD means any subgraph corresponding to the partitioning of
a sublayer into elementary volumes.

One of the problems of working with the ISD is its complex appearance, due
in part to multipie crossings of edges. In some cases it is possible to
reduce the number of crossings by drawing the graph differently. The ISD
appearance is least complicated if its edges are drawn as straight line seg-
ments with no crossings. An intermediate step is to eliminiate the crossings.
A graph which can be drawn in this way is said to be a planar graph, and such
a rendition is known as a plane graph. Edges of a simple planar graph can
always be represented by straight line segments which meet only at vertices.

This report presents some necessary and sufficient conditions for a graph
to be planar, plus an algorithm to determine the planarity of any graph from
its incidence matrix. Some definitions are introduced beforehand to facil-
itate the presentation of the criteria. Several topological invariants of
the ISD are defined to aid the discussion of computational feasibility of the
algorithm.
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II. DEFINITIONS

This section presents some basic definitions, to raise the apparent ratio
of theorems to definitions in the results which follow. Other definitions
will be introduced as the need arises. Figures illustrating the terminology
are indicated in parentheses.

A graph G consists of a vertex set V(G) of vertices and an edge
set E(G) of edges, represented by unordered pairs of elements of V(G),
called end points (Fig. 1). An edge becomes a directed edge (or arc) by
specifying an ordered pair of vertices, called the initial and terminagl
vertices (Fig. 2a). If every edge in E(G) is an arc then G is a directed
graph, or digraph (Fig. 2b). If functions are assigned to the edges of a
graph, then a direction is implied. The opposite direction is indicated by
attaching a minus sign. An example of this is current in an electrical net-
work. In this way end points of an edge may be called initial or terminal
vertices arbitrarily, and the distinction between a graph and digraph need
not be stressed.

Two vertices are adjacent if they are end points of some edge. A vertex
and edge are incident if the vertex is one of the end points of the edge. A
loop is an edge or an arc that is incident with only one vertex (Fig. 3).
Edges having the same end points are said to be parallel. A simple graph has
no parallel edges and no loops (Fig. 4). Parallel edges are also called
multiple edges,

Two graphs are isomorphic if their vertices and edges can be placed in
incidence-preserving one-to-one correspondence (Fig. 5). A geometric graph
is a graph whose vertices are selected points in two-or-three-dimensional
space and whose edges are nonintersecting simple curves each of which joins
two vertices (or, in the case of a loop, closes on a single vertex) without
containing any other vertices. A geometric realization of graph G is a
geometric graph that is isbmorphic to G.
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vertex set:

V(G) = {a,b,c,d,e,f}-

edge set:

E@) = {(a.b), (a,0), (a.d), (a,e), (bse), (5,F), (c,d)i(c,F), (d,e)} |
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Figure 1. Vertex set and edge set of a graph. )
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_ terminal \\

vertex \_, < —p*~initial vertex
{ \' directed edge (arc)

(a) A graph containing an arc.

(b) A directed araph (digraph).

b

Figure 2. Directed edges and graphs.
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Figure 3. Adjacency, incidence, and loops.
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(a) Parallel edges, arcs, and loops.

{b) A simple graph.

Figure 4. Parallel edges and simple graphs.




ki V() = {A,s,c,u,E,F}

E(Gl)

(AQB)’ (B’c)! (C’D)’ (D,F)’
(C,E), (B,E), (A,F),

{a,b,c,d,e,f,g,h,i}
{

(a) graph Gy .

d V(G = +O,L,U,WE,
/ (G,) {A B,C,D,E F} _
E(Gz) = {a.b.c,d,e,f.g,h,i}
\ : = {(A,B). (8,C), (C,F), (B,F), (8,D),

(A,0), (AE), (D,E), (E.F)]

(b) graph G, .

(c) THE ISOMORPHISM:

vertices edges
- 1-
V(GI)<1—-1>V(G2) E(Gl)<—1>E(Gz)
A E a g
B8 A b a
c B c b
D c d o
E D e d
F F f e )
g f
h i
i h

Figure 5. Isomorphic graphs 61 and G2 .
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A plane graph is a geometric graph in a plane. A planar graph is a graph
that is isomorphic to a plane graph. A plane graph divides the plane into
regions, one of which is infinite in extent. Using stereographic projection
or inversion, it is possible to redraw a plane graph so that any desired
region is the unbounded one (Ref. 2).

A11 of the figures depicting graphs in this report are actually geometric
graphs which are geometric realizations of graphs having the properties iilus-
trated. Although they are all drawn in a plane, only those figures in which
all edges meet only at vertices are plane graphs.

An edge progression is a finite sequence of (not necessarily distinct)
edges such that one end point of the first edge is also an end point of the
second, the remaining end point of the second is also an end point of the
third, etc. (Fig. 6). The edge progression is closed if the remaining end
point of the first edge is the same vertex as the remaining end point of the
last, and open otherwise. A chain (circuit) progression is an open (closed)
edge progression having no repeated edges (Fig. 7), and a chain (circuit) is
a set of edges which, if properly ordered, form a chain (circuit) progression.
A tree is a graph which contains no circuits. In a geometric graph, a chain
{circuit) is a set of edges which form a open (closed) curve. The temms arc,
path, and cycle replace the terms edge, chain, and circuit, respectively, when
the graph is a digraph (Fig. 8), but frequently the terms are used interchange-
ably, with their precise meaning indicated by the graph under consideration.

The degree of a vertex is the number of edges with which the vertex is
incident, with loops counted twice. A contraction of a graph is the removal
of a vertex V of degree two, replacing its two incident edges (Vl’ V) and
(V,V5) by one edge (V1,Vo) (Fig. 9). Two graphs are conformal, or
igomorphic to within vertices of degree two, if they are isomorphic or can be
transformed into isomorphic graphs by contractions (Fig. 10). An elementary
contraction 1s the deletion of a vertex V and an edge (V,W), replacing all
other edges (U,V) incident with V by edges (U,W) (Fig. 11).

10




edge prO§ression: (A,B), (B,E), (E,C), (C,B), (B,A), (A,D)

= a,e,f,d,a,c.

Figure 6. Edae progression in a araph.
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(a) Chain progression a,b,d,e,g,c.

(b) Circuit progression a,d,f,q,c.

N

Figure 7. Chain and circuit progressions in a graph.
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(a) arc proaression:

e,g,c,a,e,f

(b) path proaression:

g,c,b

(¢) cycle progression:

c,a,e,9

Figure 8. Progressions in a digraph.
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Yy
v v vertex of
3 - degree 2
V2
contract
|’

Figure 9. Contraction of a graph.
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Yy Y3

:
' elementary

contraction

v of W and (V,W)

Figure 11. Elementary contraction of a graph.
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Associated with a graph comprising n vertices and m edges are several
matrices. The adjacency matrixz A(G) = (Aij) js an n x n matrix defined by

A = {1 if vertices i and j are adjacent,
N 0 otherwise.

The adjacency matrix differs from the node-node matrix of electrical circuit
theory only on the diagonal, where O‘s replace nonzero entries representing
self-connection (Ref. 4).

The degree matrixz D is a diagonal matrix with
Dii = degree of vertex i, for i=1, ..., n.

There is also ar n x m <Zneidence matriz 1(G) = (Iij)’ whose entries are
given by

I,. =

i 1 if vertex i 1is the terminal end point of edge Jj,

{-1 if vertex i 1is the initial end point of edge j,
0 otherwise.

Unlike the node-branch matrix, the incidence matrix distinguishes between
initial and terminal vertices (Ref. 4).

These matrices are related by the matrix equation

T

1.1 =D-A

In Figure 12a the graph in Figure 6 has been relabelled to construct the
matrices of adjacency, degree and incidence (Figs. 12b, ¢ and d).
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i.

i.

[a) Figure 7 after relabelling.

D(G) =

(c) Degree matrix.

b

O O O O W

o O O W o

o O W oo

o w o O O

N ©O O ©O O

Figure 12.

A(G)

-0 - O

O - - O

O - O =

- O = = O

o = O O

(b) Adjacency matrix.

I(G) =

(d)

Matrices of a graph.

Incidence matrix.
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Note that every column of I(G) contains at most two nonzero elements
since every edge has two end points (not necessarily distinct). A matrix is
said to have graphic form if every column contains at most two nonzero ele-
ments.

Two topological invariants of a graph are used in this report. A
component of a graph is the largest subset of the vertex set with the pro-
perty that no vertex of that subset is joined by an edge to any vertex not
in that subset. Topologically, a component is a maximal connected subset of
the graph. For any graph G comprising n vertices, m edges, and p
components,

c(G)

m-n+p

and

c*(G) n-p

c(G) 1is called the cycle rank, circuit rank, or cyclomatic number.
c*(G) is called the cutset rank, or cocycle rank.

19
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II1. SOME CRITERIA FOR PLANARITY

Two classes of graphs which have been studied extensively have been
named Kn and Kr e Kn is the complete graph on n vertices. It
is the largest posl;bIe’sTmple graph with n vertices, as its edge set con-
sists of all possible pairs of vertices. The symbol K5 is the smallest

nonplanar complete graph (Fig. 13).

The K. o is called the complete m-partite graph. Its vertex set
is partitionéé inEom m disjoint subsets, with the ith subset containing rs
vertices. Every vertex in a particular subset is connected by an edge to
every vertex not in that subset, but no two vertices in the same subset are so
Jjoined. Figure 14 shows K3’3, the smallest nonplanar complete bipartite
graph. Note the two subsets of the six vertices. Each subset contains three
vertices. Each vertex has degree three, because it is joined to every vertex
in the complementary subset.

The existence of these two nonplanar graphs yields one of the most useful
criteria for distinguishing between planar and nonplanar graphs by inspection:

CRITERION 1: A necessary and sufficient condition for
a graph to be planar is that it contains
no subgraph conformal to Ks or K3 3

Figure 15 presents a sample EMT. The dual graph, an ISD, is shown in
Figure 16. Note that the number of crossings appears to be minimized, but it
is not clear whether or not the graph is planar. Application of this cri-
terion establishes that the ISD is nonplanar because of the heavy lines
tracing out K3’3.

Although it contains subgraphs conformal to K5 and K3 3 the

Peterson graph, shown in Figure 17, can also be reduced to K5 by a sequence
of elementary contractions. This illustrates another criterion for planarity:

20




Figure 13. KS’ the smallest nonplanar complete graph.
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Figure 14, K3 3 the smallest nonplanar complete bipartite graph,
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(a) The Peterson graph.

five
elementary
contractions

/
AN

:
!

(b) Kg

Figure 17. The Peterson graph.
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CRITERION 2: A graph is planar if and only if it -
contains no subgraphs contractable to
K5 or K3,3 by means of a sequence
of elementary contractions.

A dual graph of a graph G may be defined in several ways. A planar
graph possesses a geometric dual G* such that for each region of G,
including the infinite region, there is a vertex of G*. An edge is drawn
between two vertices of G* if the corresponding regions of G are con-
tiguous (have a common edge as part of their boundary). In this way edges
of G are placed in one-to-one correspondence with edges of G*. The graph
in Figure 6 is an example of a plane graph, shown in Figure 18a with its
geometric dual. The geometric dual of the geometric dual of a plane graph is
isomorphic to the plane graph (Fig. 18b). Note the correspondence between
vertices of degree two and parallel edges.

A cut-gset of a graph is a disconnecting set (set of edges whose removal
disconnects the graph) consisting of all the edges that join a specified set
of vertices with the complementary set of vertices. A cut-set containing no
proper subsets which are also cut-sets is called a minimal cut-set, proper
cut-set, or cocycle. The graph in Figure 6 has been dissected in Figure 19
to show its 15 cocycles.

A graph G has an abstract dual G* 1if there is a one-to-one corres-
pondence between edges of G and those of G* with the property that a set
of edges of G forms a circuit in G 1if and only if the corresponding set
of edges in G* forms a cut-set in G*. It has been shown that if G is an
abstract dual of G* then G* 1is an abstract dual of G. Furthermore, if
G 1is a planar graph with geometric dual G* then G* 1is an abstract dual
of 6.

CRITERION 3: A graph is planar if and only if it has
an abstract dual.

25




(a) A plane graph ( ) and its geometric dual (s-«--),

<[ P>

(b) The geometric dual ( ) and its geometric dual (-«---).

Figure 18. The geometric dual of a plane graph.
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Figure 19.

Cocycles of the graph in Figure l2a.
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IV. AN ALGORITHM TO DETERMINE PLANARITY

The listed criteria are useful for visually inspecting small graphs or
large symmetrical graphs but, in general, an algorithmic detemination of
planarity is desired. By working with the vector space associated with the
incidence matrix, one can develop an algebraic criterion which depends on the
proper choice of basis.

Let G be a graph with n vertices, m edges, and p components.
Without loss of generality G may be assumed to be a simple connected graph
such that every edge lies on at least one cycle, for the planarity of a graph
is not affected by the addition or deletion of multiple edges, loops, or tree
subgraphs, and a disconnected graph is planar if, and only if, each of its
components is planar. (For an EMT drawn to elementary volume level, however,
this assumption is misleading: it may be true that even though the decom-
position of each sublayer into elementary volumes results in a dual planar
subgraph, the union of all such subgraphs requires nonplanar connecting edges.
The problem arises because sublayers are pairwise disjoint, but elementary
volumes are not, and the ISD typically consists of only one component.)

The incidence matrix assigns an initial and terminal vertex to each edge.
To associate a cycle ¢ with an m-vector C, an orientation is assigned to
the cycle. As the cycle is traversed according to this orientation, the dir-
ections of the edges may or may not agree with the direction of travel, and
are said to contribute positively or negatively, accordingly. Then the
m-vector C = (Cl, cees Cm) is defined:

C. =

i -1 if edge i contributes negatively to the cycle,

{ 1 if edge i contributes positively to the cycle,
0 otherwise.

Figure 20a shows the graph of Figure 12a after contraction of vertex V4.
This is Kg4» the complete graph on four vertices. Two cycles and their assoc-
fated 6-vector are given in Figure 20b, Note that the product of each
6-vector with the incidence matrix (Fig. 20c) is zero (Fig. 20d).
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N

2 cycle 6-vector

'elnezoesyes} Cl = (‘1:'13030:1,‘1)~

1 v

4

’ 95 {32-96993} Cz = (0!'1!190!09'1)
s

v Yy

(a) K,, the complete graph (b) Two cycles in K, and
on four vertices. their associated 6-vectors.

1 00
-1 11000
0

. (c) incidence matrix I(K,) =
4 0 -1

[0 0-1 0-1-1
1-10
0
() 1 (100 1-1\[ 010-
C, 0-1 1 00-1/}\ 10-10 m
1 0 0-1 ﬁ
00 1-

Figure 20. Correspondence between m-vectors and cycles.
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Not every m-vector C corresponds to a cycle of G, but it can be shown
L that C corresponds to some cycle, or set of cycles, if and only if

c. I(G)T = 0. If Co is the set of all m-vectors representing one or more
cycles, then Co is the null space of I(G), and the dimension of Co is
c=c{(G) =m - n+ 1, the cycle rank defined above with p = 1.

The criterion for planarity of G may now be expressed in terms of the
cycle matrix whose ¢ rows correspond to the elements of a basis for Co,
and whose m columns correspond to the edges of G. The graph formed from
the cycle matrix by construction of the basis cycles is identical to G, since
every edge is a cycle edge, and the basis generates all cycles.

: CRITERION 4: A graph is planar if and only if there is
E! a cycle matrix for it having graphic form.

A basis for Co consists of ¢ m-vectors. Given any basis, all cycles
of G may be obtained by taking all possible combinations of the original ¢
m-vectors. Thus, there are

SRNORIORE

c
cycles from which a basis may be chosen, so at most (2 ; 1) different cycle

matrices must be considered.C The following table summarizes the relationship
between ¢, 2° - 1, and (2 - 1) for small values of c.

[
cycle rank # of cycles # ofcmatrices
(c = m-n+1) (2 - 1) (& 1)
2 3
3 35
4 15 1365
5 31 169,911
6 63 6.8 x 107
7 127 9.0 x 1010
8 255 4.0 x 1014 -
9 511 6.1 x 1018
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Once a basis for CO has been found, all other bases may be derived.
The first basis may be determined by the use of a spanning tree, a tree sub-
graph of G having n vertices and n-1 edges. For each edge e of G
which is not an edge of T, there is a unique cycle in G containing e and
edges of T. Figure 21 shows a spanning tree of the graph in Figure 12a
(Fig. 2la) and the unique cycles corresponding to the edges not in the tree
(Fig. 21b). By taking all three such edges, a basis for Co is obtained
(Fig. 2lc).

The search for a spanning tree proceeds by deleting edges from G. Since
every spanning tree of G contains n-1 edges, there are (nTl) possibil-
ities. The number of spanning trees of G is a topological invariant «(G)
called the complexity of G. Two related matrix formulas can be computed to
obtain «(G):

(1) «(G) J = Adj (D - A),
and
(2) (@) = L det (3+0-n),
n

1 LN

where J = e

1 eve

bt 80 o i

The first formula states that every cofactor of D - A 1is equal to «(G).
The second formula is a consequence of the first.

For the graph in Figure 12a,

J+D-A , so x(G) = 24,

[]
o = O O
- O O & O
- O & O O
o P O O
W O = =g

1
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(a) A spanning tree of the graph in Figure 12a.
.
cl = (19'130,]:091’1) cz = (19'19010919091) : C3 = (0,-1,1,0,0,1,1)
(b) Unique circuits induced by non-tree edges.
1-1 01011 ]
(c) cYcle matrix = 1-1 00101 )
0-1 1 0 011
1
Figure 21. Spanning tree and cycle matrix of a graph.
T
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There is an alternative method of obtaining spanning trees and cycles
which may be written down in terms of matrix operations. Any square submatrix
of the incidence matrix I(G) of a graph G has determinant equal to -1,

0, or +1. This fact leads to the following theorem (Ref. 5):

"Let U be a subset of E(G) containing n-1 edges.
Let I(U) denote an (n-1) x (n-1) submatrix of I(G),
consisting of the intersection of those n-1 columns of
1(G) corresponding to the edges in U and any set of n-1
I rows of I(G). Then I(U) is non-singular if any only if
' the subgraph of G having edge set U is a spanning tree
of G."

) The graph in Figure 12a is shown in Figure 22a, together with its inci-
dence matrix in Figure 22b. The five 4 x 4 submatrices obtained from the
first four columns of I(G) are all singular, since the chain (el, ey, €3, e4)
contains a cycle (Fig. 22c). However, if the first column is replaced by the
fifth column, then all five of the corresponding submatrices are nonsingular
(Fig. 22d), showing that (ez, e, €4, e5) is a spanning tree.

-
.

For this graph, there are seven cycles from which three may be chosen to
i form a cycle basis. The cycles, labelled Cl, Cz, ey C7, have been drawn -
in Figure 23, and the 35 possibilities for bases have been written out in
Figure 24. The four dependent cycles which are induced (by addition) by each
basis are listed below the three cycles forming the basis. Among the seven 1
] triplets which do not span the space, each edge occurs three times, suggesting
that there is no preferred labelling of the cycles which reduces the number of
combinations which must be considered. Application of criterion 4 to the
cycle matrices separates the candidates into three classes, denoted in Figure
s 24 by: -

(P) The cycle matrix has graphic form, proving planarity,
‘ (N) Some column of the matrix contains three nonzero elements
i (no conclusion),
and (0) Some column of the matrix contains three zeros (not a basis).
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Cl = (19'1909091)091)

Cz = (0,‘1,1,090’191) C3 = (0’0’0’1’-1’1’0)

C4 = (1,0,‘1,1,0,0,0) : ‘

cg = (1,0,-1,0,1,-1,0)

4>

CG = (0,'1‘1,'1,1,0,1) c7 = (19'1’091!0’1’1)

Figure 23. Cycles of the graph in Figure 12a.
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Figure 24. Cycle bases and spanning trees for Figure 12a.
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Also shown in Figure 24 are the spanning trees which induce the cgc'le
bases. In this example, all bases which satisfy criterion 4 for planarity
can be induced by a spanning tree. In general, however, neither existence
nor uniqueness of a spanning tree generating a given basis is guaranteed. If
b it could be pro\)ed that only bases induced by spanning trees need to be o
P checked, the usefulness of the algorithm would be increased greatly since, in

general, the complexity of a graph is a much smaller number than the combin-
atorial numbers (zc ; 1).
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V. CONCLUSIONS

In this report, the problem of determining when a graph can be redrawn
as a planar graph was addressed. Several criteria were presented and illus-
trated. One particular criterion, the existence of a cycle matrix having
graphic form, was discussed in detail. The computational effort required
to solve graphs of practical size is beyond our present and projected
computational capabilities. Further theoretical work must be done to
improve the efficiency of this algorithm if it is to be useful.
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